You can put this solution on YOUR website! Solve for B: tan(B+15°)=cot(2B+30°)
for interval:(0,180˚)
tan(B+15°)=cot(2B+30°)
tan(B+15°)=1/tan(2B+30°)
tan(B+15°)=1/tan(2(B+15°))
letx=(B+15˚)
tanx=1/tan(2x)
2tan^2(x)=1-tan^2(x)
3tan^2(x)=1
tan^2(x)=1/3
tanx=±√(1/3)=±√3/3
x=30˚, 150˚
..
B+15˚=30˚
B=15˚
and
B+15=150˚
B=135˚
2B+30° = 2(B+15°)
Let A = B+15°, then 2B+30° = 2(B+15°) = 2A
A = 30°+ 180°n, 150°+ 180°n
A = B+15°
A-15° = B
B = A - 15°
B = 30° + 180°n - 15°, 150° + 180°n - 15°
B = 15°+ 180°n, 135°+ 180°n
Edwin