SOLUTION: Given that m∠IHJ = (2x + 17)° and m∠KHJ = (5x − 10)°, identify m∠IHK. http://my.thinkwell.com/questionbank/95001-96000/95625/img/238200.jpg OPTIONS:

Algebra ->  Angles -> SOLUTION: Given that m∠IHJ = (2x + 17)° and m∠KHJ = (5x − 10)°, identify m∠IHK. http://my.thinkwell.com/questionbank/95001-96000/95625/img/238200.jpg OPTIONS:       Log On


   



Question 935000: Given that m∠IHJ = (2x + 17)° and m∠KHJ = (5x − 10)°, identify m∠IHK.
http://my.thinkwell.com/questionbank/95001-96000/95625/img/238200.jpg
OPTIONS:

m∠IHK = 70°
m∠IHK = 55°
m∠IHK = 35°
m∠IHK = 25°

Answer by MathLover1(20850) About Me  (Show Source):
You can put this solution on YOUR website!
Given that m < IHJ+=+%282x+%2B+17%29° and m <+KHJ+=+%285x+-10%29°,
identify m < IHK
IJ=JK => m < IHJ = m < KHJ
2x+%2B+17=+5x+-10 solve for x
10%2B+17=+5x+-2x
27=+3x
27%2F3=+x
9=+x
then
m < IHJ+=+2x+%2B+17° =>m < IHJ+=+2%2A9+%2B+17°=>m < IHJ+=+18%2B+17° =>m < IHJ+=+35°
and
m < KHJ+=+5%2A9+-10° => m < KHJ+=+45+-10° m < KHJ+=+35°
identify m < IHK
m < IHK=m < IHJ+ m < KHJ or m < IHK=2*m < IHJ
m < IHK=2%2A35°=> m < highlight%28IHK=70%29°