Question 932097: Find the slope of the line that passes through (6,-2) and (-3,2)
Find the equation of a line that passes through the points (-11,-4) and (9,8)
Answer by MathLover1(20849) (Show Source):
You can put this solution on YOUR website! Find the slope of the line that passes through ( , ) and ( , ):
Find the equation of a line that passes through the points ( , ) and ( , ):
Solved by pluggable solver: Finding the Equation of a Line |
First lets find the slope through the points ( , ) and ( , )
Start with the slope formula (note: ( , ) is the first point ( , ) and ( , ) is the second point ( , ))
Plug in , , , (these are the coordinates of given points)
Subtract the terms in the numerator to get . Subtract the terms in the denominator to get 
Reduce
So the slope is

------------------------------------------------
Now let's use the point-slope formula to find the equation of the line:
------Point-Slope Formula------
where is the slope, and ( , ) is one of the given points
So lets use the Point-Slope Formula to find the equation of the line
Plug in , , and (these values are given)
Rewrite as 
Rewrite as 
Distribute 
Multiply and to get 
Subtract from both sides to isolate y
Combine like terms and to get (note: if you need help with combining fractions, check out this solver)
------------------------------------------------------------------------------------------------------------
Answer:
So the equation of the line which goes through the points ( , ) and ( , ) is:
The equation is now in form (which is slope-intercept form) where the slope is and the y-intercept is 
Notice if we graph the equation and plot the points ( , ) and ( , ), we get this: (note: if you need help with graphing, check out this solver)
Graph of through the points ( , ) and ( , )
Notice how the two points lie on the line. This graphically verifies our answer.
|
since you can't see the points, here is another graph:
|
|
|