SOLUTION: Use the square identities to simplify 2(sin^2x)(sin^2x).
{{{A.3+4cos(2x)+cos(4x)}}}
{{{B.3-4cos(2x)+cos(4x)}}}
{{{C.3-4cos(2x)-cos(4x)}}}
{{{D.3+4cos(2x)-cos(4x)}}}
Algebra ->
Trigonometry-basics
-> SOLUTION: Use the square identities to simplify 2(sin^2x)(sin^2x).
{{{A.3+4cos(2x)+cos(4x)}}}
{{{B.3-4cos(2x)+cos(4x)}}}
{{{C.3-4cos(2x)-cos(4x)}}}
{{{D.3+4cos(2x)-cos(4x)}}}
Log On
You can put this solution on YOUR website! The trigonometric identity says that sin^2(x) = 1/2 - cos(2x)/2
Substituting this into the original equation and solving using trigonometric algebra gives us...
We also know from this identity that cos^2(2x)/2 = 1/4 + cos(4x)/4
So we know that our answer is B