SOLUTION: How do I find the real zeros to the problem f(x)= x^4+x^3-8x^2-9x-9?

Algebra ->  Polynomials-and-rational-expressions -> SOLUTION: How do I find the real zeros to the problem f(x)= x^4+x^3-8x^2-9x-9?      Log On


   



Question 926867: How do I find the real zeros to the problem f(x)= x^4+x^3-8x^2-9x-9?
Answer by ewatrrr(24785) About Me  (Show Source):
You can put this solution on YOUR website!
 
Hi
f(x)= x^4+x^3-8x^2-9x-9, x = ± 3 are roots (81+27-72-27-9) = 0 And( (81-27-72+ 27-9)= 0
Using Synthetic Division
3 1 1 -8 -9 -9
3 12 12 9
1 4 4 -3 0 and again
-3 -3 -3 3
1 1 1 0
(x-3)(x+3)(x^2 + x + 1)
.......
x^2 + x + 1 has imaginary roots
x+=+%28-b+%2B-+sqrt%28+b%5E2-4%2Aa%2Ac+%29%29%2F%282%2Aa%29+
x+=+%281+%2B-+i%2Asqrt%28+3+%29%29%2F2+
-.5 ± .5i√3