SOLUTION: If tanx= root 13/6, find exact value of cos2x... Please help, thorough steps and details to the answer. Thank you.

Algebra ->  Trigonometry-basics -> SOLUTION: If tanx= root 13/6, find exact value of cos2x... Please help, thorough steps and details to the answer. Thank you.      Log On


   



Question 921737: If tanx= root 13/6, find exact value of cos2x... Please help, thorough steps and details to the answer. Thank you.
Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
If tanx= root 13/6, find exact value of cos(2x).
----------------
Note: cos(2x) = cos^2(x)-sin^2(x)
----------------
Since tan = y/x, y = 13 and x = 6
----
Then r = sqrt[13^2 + 6^2] = sqrt(205)
----
So, cos(x) = x/r = 6/sqrt(205)
and sin(x) = y/r = 13/sqrt(205)
-----------------------
Your Problem:
cos(2x) = [(6/sqrt(205))^2 - (13/sqrt(205))^2] = (36 - 169)/205 = 133/205
-----------------
Cheers,
Stan H.