| 
 
 
| Question 921737:  If tanx= root 13/6, find exact value of cos2x... Please help, thorough steps and details to the answer. Thank you.
 Answer by stanbon(75887)
      (Show Source): 
You can put this solution on YOUR website! If tanx= root 13/6, find exact value of cos(2x). ----------------
 Note: cos(2x) = cos^2(x)-sin^2(x)
 ----------------
 Since tan = y/x, y = 13 and x = 6
 ----
 Then r = sqrt[13^2 + 6^2] = sqrt(205)
 ----
 So, cos(x) = x/r = 6/sqrt(205)
 and sin(x) = y/r = 13/sqrt(205)
 -----------------------
 Your Problem:
 cos(2x) = [(6/sqrt(205))^2 - (13/sqrt(205))^2] = (36 - 169)/205 = 133/205
 -----------------
 Cheers,
 Stan H.
 | 
  
 | 
 |