SOLUTION: Provided: e^(4x) + 4e^(2x) − 12 = 0 Use the substitution t = e^(2x) t^2 =
Algebra
->
Logarithm Solvers, Trainers and Word Problems
-> SOLUTION: Provided: e^(4x) + 4e^(2x) − 12 = 0 Use the substitution t = e^(2x) t^2 =
Log On
Algebra: Logarithm
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on logarithm
Question 914785
:
Provided: e^(4x) + 4e^(2x) − 12 = 0
Use the substitution t = e^(2x)
t^2 =
Answer by
lwsshak3(11628)
(
Show Source
):
You can
put this solution on YOUR website!
Provided: e^(4x) + 4e^(2x) − 12 = 0
Use the substitution t = e^(2x)
solve for x
t^2=e^4x
t^2+4t-12=0
(t+6)(t-2)=0
t=2=e^(2x)
2xlne=ln2
2x=ln2
x=ln2/2≈0.36