Question 912506: the trigonometric form of number z = 10 - 10 sqrt3i is?
a) z=20(cos 3,14/3 + i.sen 3,14/3)
b) z=15(cos 5*3,14/3 - i.sen 4*3,14/3)
c) z=20(cos 5*3,14/3 + i.sen 5*3,14/3)
d) z=20(cos 3,14/3 - i.sen 3,14/3)
Answer by stanbon(75887) (Show Source):
You can put this solution on YOUR website! the trigonometric form of number z = 10 - 10 sqrt3i is?
-----
r = sqrt[10^2 + (10sqrt(3))^2] = sqrt[100 + 300] = 20
theta = arctan(-10sqrt(3)/10) = arctan(-sqrt(3)) = (5pi/3)
-----
z = 20[cos(5pi/3) + i*sin(5pi/3))
------------------
Ans: c
-------------
Cheers,
Stan H.
===================
a) z=20(cos 3,14/3 + i.sen 3,14/3)
b) z=15(cos 5*3,14/3 - i.sen 4*3,14/3)
c) z=20(cos 5*3,14/3 + i.sen 5*3,14/3)
d) z=20(cos 3,14/3 - i.sen 3,14/3)
|
|
|