SOLUTION: Let P(t) be the point on the unit circle U that corresponds to t. If P(t) = (15/17, 8/17), find the following. P(t+pi)=( ? , ? ) P(t-pi)=( ? , ? ) P(-t)=( ? , ? ) P(-t-pi)

Algebra ->  Trigonometry-basics -> SOLUTION: Let P(t) be the point on the unit circle U that corresponds to t. If P(t) = (15/17, 8/17), find the following. P(t+pi)=( ? , ? ) P(t-pi)=( ? , ? ) P(-t)=( ? , ? ) P(-t-pi)      Log On


   



Question 912213: Let P(t) be the point on the unit circle U that corresponds to t. If P(t) = (15/17, 8/17), find the following.
P(t+pi)=( ? , ? )
P(t-pi)=( ? , ? )
P(-t)=( ? , ? )
P(-t-pi)=( ? , ? )

Answer by jim_thompson5910(35256) About Me  (Show Source):
You can put this solution on YOUR website!
(15/17, 8/17) is in quadrant I

Adding pi to the angle rotates it 180 degrees to quadrant III where both x and y are negative, so

P(t+pi)=(-15/17, -8/17)

-------------------------------------------------------------

The same thing happens when you subtract pi because you will land in the same place rotating 180 degrees CCW or CW

P(t-pi)=(-15/17, -8/17)

-------------------------------------------------------------
P(-t) = (15/17, -8/17)

because you go below the x axis when you have a negative angle
-------------------------------------------------------------
Take the angle -t and rotate it 180 degrees. You'll go from Q4 to Q2

So x is negative, y is positive

P(-t-pi) = (-15/17, 8/17)
-------------------------------------------------------------