Question 905669: Please classify each system and determine the number of solutions.
1.) 7x+y=13 and 28x+4y=-2
2.) 2x-3y=-15 and 3y-2x=15
3.) 8y-24x=64 and 9y+45x=72
4.) 2x+2y=-10 and 4x+4y=-16
Answer by MathLover1(20850) (Show Source):
You can put this solution on YOUR website!
1.)
and
Solved by pluggable solver: Solve the System of Equations by Graphing |
Start with the given system of equations:


In order to graph these equations, we need to solve for y for each equation.
So let's solve for y on the first equation
Start with the given equation
Subtract from both sides
Rearrange the equation
Divide both sides by 
Break up the fraction
Reduce
Now lets graph (note: if you need help with graphing, check out this solver)
Graph of 
So let's solve for y on the second equation
Start with the given equation
Subtract from both sides
Rearrange the equation
Divide both sides by 
Break up the fraction
Reduce
Now lets add the graph of to our first plot to get:
Graph of (red) and (green)
From the graph, we can see that the two lines are parallel and will never intersect. So there are no solutions and the system is inconsistent. |
2.)
and
Solved by pluggable solver: Solve the System of Equations by Graphing |
Start with the given system of equations:


In order to graph these equations, we need to solve for y for each equation.
So let's solve for y on the first equation
Start with the given equation
Subtract from both sides
Rearrange the equation
Divide both sides by 
Break up the fraction
Reduce
Now lets graph (note: if you need help with graphing, check out this solver)
Graph of 
So let's solve for y on the second equation
Start with the given equation
Add to both sides
Rearrange the equation
Divide both sides by 
Break up the fraction
Reduce
Now lets add the graph of to our first plot to get:
Graph of (red) and (green)
From the graph, we can see that the two lines are identical (one lies perfectly on top of the other) and intersect at all points of both lines. So there are an infinite number of solutions and the system is dependent. |
3.)
and

or
and
Solved by pluggable solver: Solve the System of Equations by Graphing |
Start with the given system of equations:


In order to graph these equations, we need to solve for y for each equation.
So let's solve for y on the first equation
Start with the given equation
Add to both sides
Rearrange the equation
Divide both sides by 
Break up the fraction
Reduce
Now lets graph (note: if you need help with graphing, check out this solver)
Graph of 
So let's solve for y on the second equation
Start with the given equation
Subtract from both sides
Rearrange the equation
Divide both sides by 
Break up the fraction
Reduce
Now lets add the graph of to our first plot to get:
Graph of (red) and (green)
From the graph, we can see that the two lines intersect at the point ( , ) (note: you might have to adjust the window to see the intersection) |
4.)
and
Solved by pluggable solver: Solve the System of Equations by Graphing |
Start with the given system of equations:


In order to graph these equations, we need to solve for y for each equation.
So let's solve for y on the first equation
Start with the given equation
Subtract from both sides
Rearrange the equation
Divide both sides by 
Break up the fraction
Reduce
Now lets graph (note: if you need help with graphing, check out this solver)
Graph of 
So let's solve for y on the second equation
Start with the given equation
Subtract from both sides
Rearrange the equation
Divide both sides by 
Break up the fraction
Reduce
Now lets add the graph of to our first plot to get:
Graph of (red) and (green)
From the graph, we can see that the two lines are parallel and will never intersect. So there are no solutions and the system is inconsistent. |
|
|
|