| 
 
 
| Question 901414:  Solve the system of linear equations using the Gauss-Jordan elimination method.
 − 	x2	 + 	x3	 = 	1
 4x1	 − 	3x2	 + 	2x3	 = 	18
 3x1	 + 	2x2	 + 	x3	 = 	13
 
 Answer by richwmiller(17219)
      (Show Source): 
You can put this solution on YOUR website! 0x-y+z=1 4x-3y+2z=18
 3x+2y+z=13
 4x-3y+2z=18
 0x-y+z=1
 3x+2y+z=13
 4,-3,2,18
 0,-1,1,1
 3,2,1,13
 divide row 1 by 4
 1,-3/4,2/4,18/4
 0,-1,1,1
 3,2,1,13
 add  down (0) *row 1 to row 2
 1,-3/4,1/2,9/2
 0,-1,1,1
 3,2,1,13
 add  down (-3) *row 1 to row 3
 1,-3/4,1/2,9/2
 0,-1,1,1
 0,17/4,-1/2,-1/2
 divide row 2 by -1
 1,-3/4,1/2,9/2
 0,1,-1,-1
 0,17/4,-1/2,-1/2
 add  down (-17/4) *row 2 to row 3
 1,-3/4,1/2,9/2
 0,1,-1,-1
 0,0,30/8,30/8
 divide row 3 by 15/4
 1,-3/4,1/2,9/2
 0,1,-1,-1
 0,0,1,1
 We now have the value for the last variable.
 We will work our way up and get the other solutions.
 add up  (1) *row 3 to row 2
 1,-3/4,1/2,9/2
 0,1,0,0
 0,0,1,1
 add up  (-1/2) *row 3 to row 1
 1,-6/8,0,4
 0,1,0,0
 0,0,1,1
 add up  (3/4) *row 2 to row 1
 1,0,0,4
 0,1,0,0
 0,0,1,1
 final
 1,0,0,4
 0,1,0,0
 0,0,1,1
 "4","0","1"
 (4,0,1)
 
 | 
  
 | 
 |