SOLUTION: Find the sum of (1+2+3....+x) + (2+3+4....+x) + (3+4+5....+x) + ...................... till n terms where n<x

Algebra ->  Sequences-and-series -> SOLUTION: Find the sum of (1+2+3....+x) + (2+3+4....+x) + (3+4+5....+x) + ...................... till n terms where n<x      Log On


   



Question 892087: Find the sum of
(1+2+3....+x) + (2+3+4....+x) + (3+4+5....+x) + ...................... till n terms where n

Answer by robertb(5830) About Me  (Show Source):
You can put this solution on YOUR website!
Arrange the sums in this manner:
1 + 2 + 3 + 4 + ... + n + (n+1) + ... + x
2 + 3 + 4 + ... + n + (n+1) + ... + x
3 + 4 + ... + n + (n+1) + ... + x
4 + ... + n + (n+1) + ... + x
...
(n-1)+n + (n+1) + ... + x
n + (n+1) + ... + x

The triangular portion of the sums can be expressed as
1 + 2*2 + 3*3 + 4*4 +... + (n-1)*(n-1) + n*n, or
1%2B2%5E2+%2B+3%5E2+%2B4%5E2+...+%28n-1%29%5E2+%2Bn%5E2+=+%28n%2A%28n%2B1%29%2A%282n%2B1%29%29%2F6
Now the sum (n+1)+...+x is added n times. Hence
the sum n%2A%28%28x-n%29%2F2%29%2A%28n%2B1%2Bx%29, by using the sum of an arithmetic sequence.
Therefore, (1+2+3....+x) + (2+3+4....+x) + (3+4+5....+x) + .... till n terms where n < x, is
%28n%2A%28n%2B1%29%2A%282n%2B1%29%29%2F6+%2B+%28n%2A%28x-n%29%2A%28n%2B1%2Bx%29%29%2F2