SOLUTION: Rope Cutting. A rope that is 168ft long is be cut into three pieces such that the second piece is 6ft less than three times the first, and the third is 2ft more than two-thirds of
Algebra ->
Human-and-algebraic-language
-> SOLUTION: Rope Cutting. A rope that is 168ft long is be cut into three pieces such that the second piece is 6ft less than three times the first, and the third is 2ft more than two-thirds of
Log On
Question 889830: Rope Cutting. A rope that is 168ft long is be cut into three pieces such that the second piece is 6ft less than three times the first, and the third is 2ft more than two-thirds of the second. Find the length of the longest piece.
168= x + 3x-6 + 2 + 2/3 * 2
im stuck here is this correct and then do i clear the fraction? Answer by Alan3354(69443) (Show Source):
You can put this solution on YOUR website! Rope Cutting. A rope that is 168ft long is be cut into three pieces such that the second piece is 6ft less than three times the first, and the third is 2ft more than two-thirds of the second. Find the length of the longest piece.
168= x + 3x-6 + 2 + 2/3 * 2
im stuck here is this correct and then do i clear the fraction?
Makes no difference.
---------------
1st piece is x
2nd piece is 3x-6
3rd piece is (2/3)*(3x-6) + 2
----
168 = x + 3x-6 + (2/3)*(3x-6) + 2