SOLUTION: Two cars travel the same distance. The first car travels at a rate of 37 mph and reaches it's destination in t hours. The second car travels at a rate of 56 mph and reaches it's d
Algebra ->
Customizable Word Problem Solvers
-> Travel
-> SOLUTION: Two cars travel the same distance. The first car travels at a rate of 37 mph and reaches it's destination in t hours. The second car travels at a rate of 56 mph and reaches it's d
Log On
Question 889137: Two cars travel the same distance. The first car travels at a rate of 37 mph and reaches it's destination in t hours. The second car travels at a rate of 56 mph and reaches it's destination in 2.8 hours earlier than the first car.
How long does it take the first car to reach it's destination
Answer in units of hours Found 2 solutions by Alan3354, lwsshak3:Answer by Alan3354(69443) (Show Source):
You can put this solution on YOUR website! Two cars travel the same distance. The first car travels at a rate of 37 mph and reaches it's [sic] destination in t hours. The second car travels at a rate of 56 mph and reaches it's [sic] destination in 2.8 hours earlier than the first car.
How long does it take the first car to reach it's [sic] destination
---------------
d = r*t = 37t
d = 56*(t - 2.8)
37t = 56t - 156.8
t = 156.8/19
t = 8.2526 hours
=================
it's = it is
You can put this solution on YOUR website! Two cars travel the same distance. The first car travels at a rate of 37 mph and reaches it's destination in t hours. The second car travels at a rate of 56 mph and reaches it's destination in 2.8 hours earlier than the first car. How long does it take the first car to reach it's destination
***
let t =How long does it takes the first car to reach it's destination
t-2.8=How long does it takes the second car to reach it's destination
distance=rate of speed*travel time
..
37t=56(t-2.8)
37t=56t-156.8
19t=156.8
t≈8.25
How long does it takes the first car to reach it's destination=8.25 hrs