SOLUTION: How do I find {{{ cot( sin^-1(-1/2) - sec^-1(2) ) }}}?
I have {{{ x = sin^-1(-1/2)}}} implies sin x= -1/2
and {{{ y = sec^-1(2)}}} implies sec y= 2.
But I'm not sure if co
Algebra ->
Trigonometry-basics
-> SOLUTION: How do I find {{{ cot( sin^-1(-1/2) - sec^-1(2) ) }}}?
I have {{{ x = sin^-1(-1/2)}}} implies sin x= -1/2
and {{{ y = sec^-1(2)}}} implies sec y= 2.
But I'm not sure if co
Log On
Question 888015: How do I find ?
I have implies sin x= -1/2
and implies sec y= 2.
But I'm not sure if cot( x - y) is the right way to go. Answer by stanbon(75887) (Show Source):
You can put this solution on YOUR website! cot( sin^-1(-1/2) - sec^-1(2) )
-----
If sin(x) = -1/2, x = 210 degrees
If sec(y) = 2, y = 60 degrees
----
cot(210-60) = cot(50) = 0.8391
===================
Cheers,
Stan H.
-----------------
-------------