cos[(n+1)x]sin[(n+2)x]+cos[(n+1)x]cos[(n+2)x] = cos(x)
Let A = (n+1)x = nx+x
let B = (n+2)x = nx+2x
Then B-A = (nx+2x)-(nx+x) = nx+2x-nx-x = x
cos(A)sin(B)+cos(A)cos(B)=cos(B-A)
cos(A)sin(B)+cos(A)cos(B)=cos(B)cos(A)+sin(B)sin(A)
cos(A)sin(B) = sin(B)sin(A)
cos(A)sin(B) - sin(B)sin(A) = 0
sin(B)[cos(A)-sin(A)} = 0
sin(B) = 0; cos(A)-sin(A) = 0
-sin(A) = -cos(A)
B = ; sin(A) = cos(A)
where P is any integer
(n+2)x = ; tan(A) = 1
x = A =
A =
where Q is any integer
n(x+1) =
x+1 =
x =
Edwin