sin(x)-3sin(2x)+sin(3x) = cos(x)-3cos(2x)+cos3x
Write x as 2x-x and 3x as 2x+x
sin(2x-x)-3sin(2x)+sin(2x+x) = cos(2x-x)-3cos(2x)+cos(2x+x)
Left hand side's 1st and 3rd terms:
sin(2x-x) = sin(2x)cos(x)-cos(2x)sin(x)
sin(2x+x) = sin(2x)cos(x)+cos(2x)sin(x)
So left hand side becomes
2sin(2x)cos(x) - 3sin(2x)
Right hand side's 1st and 3rd terms:
cos(2x-x) = cos(2x)cos(x)+sin(2x)sin(x)
cos(2x+x) = cos(2x)cos(x)-sin(2x)sin(x)
So right hand side becomes
2cos(2x)cos(x) - 3cos(2x)
So the equation is now:
2sin(2x)cos(x) - 3sin(2x) = 2cos(2x)cos(x) - 3cos(2x)
Factor out common factor:
sin(2x)[2cos(x) - 3] = cos(2x)[2cos(x) - 3]
sin(2x)[2cos(x) - 3] - cos(2x)[2cos(x) - 3] = 0
[2cos(x)-3][sin(2x)-cos(2x)] = 0
Use zero-factor property:
2cos(x)-3 = 0; sin(2x)-cos(2x) = 0
2cos(x) = 3 sin(2x) = cos(2x)
cos(x) = 3/2 = 1
(no solution to tan(2x) = 1
this part) 2x = 45° + 180°n
x = 22.5° + 90°n
or in radians:
2x =
x =
x =
x =
x =
Edwin