| 
 
 
| Question 881256:  Find the exact value of sin (x+y) if sin x = 4/5 in Quadrant II and tan y = 12/5 in Quadrant III.
 Answer by lwsshak3(11628)
      (Show Source): 
You can put this solution on YOUR website! Find the exact value of sin (x+y) if sin x = 4/5 in Quadrant II and tan y = 12/5 in Quadrant III. ***
 Identity:sin(x+y)=sinx*cosy+cosx*siny
 sinx=4/5, (3-4-5 reference right triangle in quadrant II in which sin>0, cos<0.)
 cosx=-3/5
 ..
 tany=12/5 (5-12-13  reference right triangle in quadrant III in which sin<0, cos<0.)
 siny=-12/13
 cosy=-5/13
 ..
 sin(x+y)=4/5*-5/13+-3/5*-12/13=-20/65+36/65=16/65
 ..
 Calculator check:
 sinx=4/5 in Q2
 x≈126.87˚
 tany=12/5 in Q3
 y≈247.38˚
 x+y ≈374.25˚
 sin(x+y)=sin(374.2˚)≈0.2461…
 Exact value=16/65≈0.2461…
 | 
  
 | 
 |