SOLUTION: Any and all help with this problem is GREATLY appreciated!! I think maybe the phase shift is left 3.14 What are the amplitude, period, phase shift, and midline of f(x) = 7 cos(2

Algebra ->  Trigonometry-basics -> SOLUTION: Any and all help with this problem is GREATLY appreciated!! I think maybe the phase shift is left 3.14 What are the amplitude, period, phase shift, and midline of f(x) = 7 cos(2      Log On


   



Question 878486: Any and all help with this problem is GREATLY appreciated!! I think maybe the phase shift is left 3.14
What are the amplitude, period, phase shift, and midline of f(x) = 7 cos(2x + π) − 3?
amplitude = −3; period: π; phase shift: x = negative pi over 2; midline: y = 3
amplitude: 7; period: π; phase shift: x = negative pi over 2; midline: y = −3
amplitude: 7; period: 2π; phase shift: x = pi over 2; midline: y = 3
amplitude: −3; period: 2π; phase shift: x = pi over 2; midline: y = −3

Answer by jim_thompson5910(35256) About Me  (Show Source):
You can put this solution on YOUR website!
f(x) = 7 cos(2x + π) − 3 is in the form f(x) = A*cos(Bx - C) + D

where

A = 7
B = 2
C = -pi
D = -3

-------------------------------------------------------

Amplitude: |A| = |7| = 7

Period: T = 2pi/B = 2pi/2 = pi

Phase Shift: C/B = -pi/2 (so we're shifting left pi/2 units)

Midline: D = -3 ---> y = -3

-------------------------------------------------------

Put that all together and you get choice B as the final answer.