SOLUTION: Determine whether {{{y=7x-25}}} and {{{y=sqrt(25-x^2)}}} have any points in common

Algebra ->  Polynomials-and-rational-expressions -> SOLUTION: Determine whether {{{y=7x-25}}} and {{{y=sqrt(25-x^2)}}} have any points in common       Log On


   



Question 874982: Determine whether y=7x-25 and y=sqrt%2825-x%5E2%29 have any points in common

Answer by josgarithmetic(39623) About Me  (Show Source):
You can put this solution on YOUR website!
If yes then 7x-25=sqrt%2825-x%5E2%29.
-
49x%5E2-2%2A7%2A25x%2B25%5E2=25-x%5E2
50x%5E2-7%2A50x%2B25%5E2-25=0
50x%5E2-7%2A50x%2B25%2825-1%29=0
50x%5E2-7%2A50x%2B25%2A24=0
x%5E2-7x%2B12=0
highlight_green%28%28x-3%29%28x-4%29=0%29.

x=4, y=7*4-25=3.
x=3, y=7*3-25-4.
-
-
Shared points are (3,-4) and (4,3).