SOLUTION: 5^(x+1)=5^x+1

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: 5^(x+1)=5^x+1      Log On


   



Question 873872: 5^(x+1)=5^x+1
Answer by jim_thompson5910(35256) About Me  (Show Source):
You can put this solution on YOUR website!
First isolate 5^x and then use logs to isolate x itself.


5^(x+1)=5^x+1

5^x*5^1=5^x+1

5^x*5=5^x+1

5*5^x=5^x+1

5*5^x-5^x=1

5*5^x-1*5^x=1

(5-1)*5^x=1

4*5^x=1

5^x=1/4

log(5^x)=log(1/4)

x*log(5)=log(1/4)

x=log(1/4)/log(5)