| 
 
 
| Question 870626:  Find all real numbers in the interval [0, 2pi) that satisfy each equation.
 1. 3sinx+3=2cos^2x
 2. sinx^2x=cos^2x
 Answer by lwsshak3(11628)
      (Show Source): 
You can put this solution on YOUR website! Find all real numbers in the interval [0, 2pi) that satisfy each equation. 1. 3sinx+3=2cos^2x
 3sinx+3=2(1-sin^2x)
 sinx+3=2-2sin^2x
 2sin^2x+sinx+1=0
 (2sinx+1)(sinx+1)=0
 ..
 2sinx+1=0
 sinx=-1/2
 x=3π/6, 11π/6
 or
 sinx+1=0
 sinx=-1
 x=3π/2
 ..
 2. sinx^2x=cos^2x
 sin^2x-cos^2x=0
 cos(2x)=0
 2x=π/2, 3π/2
 x=π/4, 3π/4
 
 | 
  
 | 
 |