SOLUTION: Give the reasons for the steps in the following proof. If 3x+(-1)=0, then x= 1/3
3x+(-1)=0
[3x+(-1)]+1= 0+1
3x+[(-1)+1]= 0+1
3x+0= 0+1
3x= 1
1/3(3x)= 1/3(1)
(1/3*3)x= 1/3*1
Algebra ->
Geometry-proofs
-> SOLUTION: Give the reasons for the steps in the following proof. If 3x+(-1)=0, then x= 1/3
3x+(-1)=0
[3x+(-1)]+1= 0+1
3x+[(-1)+1]= 0+1
3x+0= 0+1
3x= 1
1/3(3x)= 1/3(1)
(1/3*3)x= 1/3*1
Log On
Question 87009: Give the reasons for the steps in the following proof. If 3x+(-1)=0, then x= 1/3
3x+(-1)=0
[3x+(-1)]+1= 0+1
3x+[(-1)+1]= 0+1
3x+0= 0+1
3x= 1
1/3(3x)= 1/3(1)
(1/3*3)x= 1/3*1
1*x= 1/3*1
x= 1/3 Answer by Edwin McCravy(20060) (Show Source):
Give the reasons for the steps in the following proof.
If 3x+(-1)=0, then x = 1/3
3x+(-1)=0 GIVEN
[3x+(-1)]+1= 0+1 EQUALS ADDED TO EQUALS GIVES EQUALS
3x+[(-1)+1]= 0+1 ASSOCIATIVE PRINCIPLE OF ADDITION
3x+0= 0+1 ADDITIVE INVERSE PROPERTY
3x= 1 ADDITIVE IDENTITY PROPERTY
1/3(3x)= 1/3(1) EQUALS MULTIPLIED BY EQUALS GIVES EQUALS
(1/3*3)x= 1/3*1 ASSOCIATIVE PRINCIPLE OF MULTIPLICATION
1*x= 1/3*1 MULTIPLICATIVE INVERSE PROPERTY
x= 1/3 MULTIPLICATIVE IDENTITY PROPERTY
Edwin