You can
put this solution on YOUR website!
1. P -> R
2. (Q & P) v P
Conclusion R
(Q & P) v P given premise
(QvP)&(PvP) distributive law of v over &
(QvP)&P idempotent law, PvP is equivalent to P
P simplification
P -> R given premise
P&(P -> R) From two preceding statements
P&(~PvR) Implication
(P&~P)v(P&R) Distributive law of & over v
Fv(P&R) Contradiction P&~P is equivalent to F
P&R F is the identity for v
R Simplification
Edwin