Question 867363:  I have no clue how to do these problems. Please help 
 
Find the expression. 
1.) u = (-3,-2), v = (-8, -11) Find u-v 
choices: a.) (-5,-19) b.) (-1,3) c.) (5,9) d.) (-11,-13)
 
2.) w = (-1,3) and v = (0,1) Find ||-4w -v|| 
choices: a.) 185  b.)sqrt 185  c.) sqrt 155  d.) 155
 
3.) u = 4i - 6j and v = -5i - 21j; Find ||v-u|| 
choices: a.) sqrt 34  b.) -2 sqrt 34  c.) 3 sqrt 35  d.) 3 sqrt 34
 
4.) if v = 3i + j and w = -10i + j; Find ||v + w|| 
choices: a.) sqrt 130  b.) 13  c.) sqrt 53  d.) sqrt 111
 
 
 
 
 
  
 Found 2 solutions by  jim_thompson5910, josgarithmetic: Answer by jim_thompson5910(35256)      (Show Source): 
You can  put this solution on YOUR website! Find the expression. 
1.) u = (-3,-2), v = (-8, -11) Find u-v 
choices: a.) (-5,-19) b.) (-1,3) c.) (5,9) d.) (-11,-13)
 
 
 
Simply subtract the corresponding elements like so:
 
 
 
u - v = (-3,-2) - (-8, -11)
 
 
 
u - v = (-3-(-8),-2-(-11))
 
 
 
u - v = (-3+8,-2+11)
 
 
 
u - v = (5,9) which is choice C 
----------------------------------------------------------------------- 
2.) w = (-1,3) and v = (0,1) Find ||-4w -v|| 
choices: a.) 185  b.)sqrt 185  c.) sqrt 155  d.) 155
 
 
 
First multiply everything in w by -4 to get
 
 
 
w = (-1,3)
 
 
 
-4w = -4(-1,3)
 
 
 
-4w = (-4(-1),-4(3))
 
 
 
-4w = (4,-12)
 
 
 
Then subtract off v
 
 
 
-4w - v = (4,-12) - (0,1)
 
 
 
-4w - v = (4-0,-12-1)
 
 
 
-4w - v = (4,-13)
 
 
 
Finally, find the length of this vector using the formula ||x|| = sqrt(a^2 + b^2) where x = (a,b)
 
 
 
So,
 
 
 
||-4w - v|| = sqrt((4)^2 + (-13)^2)
 
 
 
||-4w - v|| = sqrt(16+169)
 
 
 
||-4w - v|| = sqrt(185)  which is choice B 
----------------------------------------------------------------------- 
3.) u = 4i - 6j and v = -5i - 21j; Find ||v-u|| 
choices: a.) sqrt 34  b.) -2 sqrt 34  c.) 3 sqrt 35  d.) 3 sqrt 34
 
 
 
First compute v-u
 
 
 
v-u = (-5i - 21j) - (4i - 6j)
 
 
 
v-u = -5i - 21j - 4i + 6j
 
 
 
v-u = -9i - 15j
 
 
 
Then find the length of this vector
 
 
 
||v-u|| = sqrt((-9)^2+(-15)^2)
 
 
 
||v-u|| = sqrt(81+225)
 
 
 
||v-u|| = sqrt(306)
 
 
 
||v-u|| = sqrt(9*34)
 
 
 
||v-u|| = sqrt(9)*sqrt(34)
 
 
 
||v-u|| = 3*sqrt(34)  which is choice D 
----------------------------------------------------------------------- 
4.) if v = 3i + j and w = -10i + j; Find ||v + w|| 
choices: a.) sqrt 130  b.) 13  c.) sqrt 53  d.) sqrt 111
 
 
 
Start by adding vectors v and w
 
 
 
v + w = (3i+j) + (-10i+j)
 
 
 
v + w = 3i+j-10i+j
 
 
 
v + w = -7i+2j
 
 
 
Now compute the length
 
 
 
||v + w|| = sqrt(a^2 + b^2)
 
 
 
||v + w|| = sqrt((-7)^2 + (2)^2)
 
 
 
||v + w|| = sqrt(49+4)
 
 
 
||v + w|| = sqrt(53)  which is choice C 
 Answer by josgarithmetic(39630)      (Show Source): 
You can  put this solution on YOUR website! For number 1, you add or subtract components.  Your question is "u-v" and you have the components of u and of v. 
u-v=( -3-(-8), -2-(-11) ) 
( -3+8, -2+11 ) 
( 5, 9 ). 
  | 
 
  
 
 |   
 
 |