Question 865593:  Write a recursive formula for the following sequence: 7, 10, 21, 30, 63, 90, 189, 270 
 Answer by richwmiller(17219)      (Show Source): 
You can  put this solution on YOUR website! 7, 10, 21, 30, 63, 90, 189, 270, 567, 810, 1701, 2430, 5103, 7290, 15309, 21870, 45927, 65610, 137781, 196830, 413343, 590490, 1240029, 1771470, 3720087, 5314410, 11160261, 15943230, 33480783, 47829690, 100442349, 143489070, 301327047, 430467210, 903981141, 1291401630, 2711943423, 3874204890, 8135830269, 11622614670, 24407490807, 34867844010, 73222472421, 104603532030, 219667417263, 313810596090, 659002251789, 941431788270, 1977006755367, 2824295364810, 5931020266101, 8472886094430, 17793060798303, 25418658283290, 53379182394909, 76255974849870, 160137547184727, 228767924549610, 480412641554181, 686303773648830, ...
 
 
7+3^1=10 
3^1*7=21
 
3^2+7*3^1=30 
7*3^2=63
 
or  
3^3+3^1*7=90 
7*3^3=189 
(-7-10z)/(3z^2-1)
 
or 
An = 1/2 3^(n/2-3/2)(21-21(-1)^n+10sqrt(3)+10 (-1)^n sqrt(3))
 
 
 
 
 
 
 
 
 
 
  | 
 
  
 
 |   
 
 |