SOLUTION: Use the following n=10 sample data to construct a 90% confidence interval of the population mean μ. Assume a simple random sample was taken the population SD is unknown, and

Algebra ->  Probability-and-statistics -> SOLUTION: Use the following n=10 sample data to construct a 90% confidence interval of the population mean μ. Assume a simple random sample was taken the population SD is unknown, and       Log On


   



Question 864078: Use the following n=10 sample data to construct a 90% confidence interval of the population mean μ. Assume a simple random sample was taken the population SD is unknown, and the population is normally distributed.

86 135 250 357 447 553 646 769 830 1135


Found 2 solutions by ewatrrr, sheville151:
Answer by ewatrrr(24785) About Me  (Show Source):
You can put this solution on YOUR website!

Hi
Calculator and/0r use of Electronic Worksheets Absolutely necessary
x m (x-µ) (x-µ)^2
86 520.8 -434.80 189051.040
135 520.8 -385.80 148841.640
250 520.8 -270.80 73332.640
357 520.8 -163.80 26830.440
447 520.8 -73.80 5446.440
553 520.8 32.20 1036.840
646 520.8 125.20 15675.040
769 520.8 248.20 61603.240
830 520.8 309.20 95604.640
1135 520.8 614.20 377241.640 Sum
5208 994663.600 sum/9 = V
110518.178 sqrt V
SD 332.443
ME = 1.645*332.4/sqrt(10) = 173
CI: 521-173-ME < u < 521 + 173 (348, 694) not listed; B the closest match

Answer by sheville151(1) About Me  (Show Source):
You can put this solution on YOUR website!
Hi
Calculator and/0r use of Electronic Worksheets Absolutely necessary
x µ (x-µ) (x-µ)^2
86 520.8 -434.8 189051.04
135 520.8 -385.8 148841.64
250 520.8 -270.8 73332.64
357 520.8 -163.8 26830.44
447 520.8 -73.8 5446.44
553 520.8 32.2 1036.84
646 520.8 125.2 15675.04
769 520.8 248.2 61603.24
830 520.8 309.2 95604.64
1135 520.8 614.2 377241.640 Sum
5208 994663.600 sum/9 = V
110518.178 sqrt V
SD 332.443
Degrees of Freedom = n - 1 --> 10 - 1 = 9 + 2 tailed .10 (90% interval)
9.10 on t value table = 1.833
ME = 1.833*332.4/sqrt(10) = 192.69
CI: 520.8 - 192.69 < μ < 520.8 + 192.69 (328, 714)