You can put this solution on YOUR website! P(E1)=0.25
P(E2)= 0.75
P(F|E1)=0.05
p(F|E2)=0.12
Find P(E2|F)=
----------------
P(E2|F) = [P(E2 and F)]/P(F)
=[P(F|E2)*P(E2)]/P(F)
You know P(F|E2) and you know P(E2)
Need to find P(F)
-----------
P(F) = P(F and E1) + P(F and E2)
= P(F|E1)*P(E1) + P(F|E2)*P(E2)
You know all of these.
---------------
Substituting you get:
P(E2|F) = (0.12*0.75)/[0.05*0.25+0.12*0.75]
= 0.09/0.1025
= 0.878
=============
Cheers,
Stan H.