SOLUTION: Find the exact value of: sin(2cos^-1(24/25)) and tan(cos^-1(1/5))

Algebra ->  Trigonometry-basics -> SOLUTION: Find the exact value of: sin(2cos^-1(24/25)) and tan(cos^-1(1/5))      Log On


   



Question 863561: Find the exact value of:
sin(2cos^-1(24/25))
and
tan(cos^-1(1/5))

Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
Find the exact value of:
sin(2cos^-1(24/25))
Note: sin(2t) = 2sin(t)*cos(t)
------
Since cos = (24/25), sin = sqrt(25^2-24^2)/25 = 7/25
Therefore: sin(2cos^-1(24/25)) = 2(7/25)(24/25) = 0.5376
------------------------------------------------------------
and
--------------------------
tan(cos^-1(1/5))
---
Let t = cos-1(1/5)
Since cos(t) = 1/5, x = 1 and r = 5
Then y = sqrt(5^2-1^2) = 2sqrt(6)
-----
Ans: tan(t) = y/x = (2sqrt(6))/1 = 2sqrt(6)
=============================================
Cheers,
Stan H.
===================