You can
put this solution on YOUR website!
To prove: cos(20°) + cos(100°) +cos(140°) = 0
Write the angles in the first two terms in terms
of their average, which is 60°, a special angle,
and use a double angle identity on each:
cos(20°) = cos(60°-40°) = cos(60°)cos(40°)+sin(60°)sin(40°)
cos(100°) = cos(60°+40°) = cos(60°)cos(40°)-sin(60°)sin(40°)
------------------------------------------------------------
SUM OF FIRST TWO TERMS = 2cos(60°)cos(40°) = 2
cos(40°) = cos(40°)
Write the angle in the third term in terms of 40° and use
use a double angle identity:
cos(140°) = cos(180°-40°) = cos(180°)cos(40°)+sin(180°)sin(40°)
= (-1)cos(40°) + 0(sin(40°)
= -cos(40°)
So we have:
cos(20°) + cos(100°) + cos(140°) = cos(40°) - cos(40°) = 0
Edwin