Question 856666:  Show that (n+1)!-3(n!)+(n-1)!=(n-1)!(n-1)^2 
 Answer by jim_thompson5910(35256)      (Show Source): 
You can  put this solution on YOUR website! Keep in mind that n! = n*(n-1)*(n-2)...(3)*(2)*(1)
 
 
 
You can shorten this to say n! = n(n-1)!
 
 
 
Similarly, (n+1)! = (n+1)*n! which leads to (n+1)! = (n+1)*n*(n-1)!
 
 
 
We'll use these equations to make substitutions below
 
 
 
 
----------------------------------------------------------------------------------
 
 
 
 
(n+1)!-3(n!)+(n-1)!=(n-1)!(n-1)^2
 
 
 
(n+1)*(n)*(n-1)!-3(n)*(n-1)!+(n-1)!=(n-1)!(n-1)^2
 
 
 
(n-1)! [ (n+1)*(n)-3(n)+1 ] = (n-1)!(n-1)^2
 
 
 
(n-1)! [ n^2+n-3n+1 ] = (n-1)!(n-1)^2
 
 
 
(n-1)! [ n^2-2n+1 ] = (n-1)!(n-1)^2
 
 
 
(n-1)! (n-1)^2 = (n-1)!(n-1)^2
 
 
 
So the identity is confirmed.
 
 
 
Notice how I only changed the left side and didn't alter the right side. 
  | 
 
  
 
 |   
 
 |