SOLUTION: prove the following identities: sin^2x+4sinx+3/cos^^2x= 3+sinx/1-sinx

Algebra ->  Trigonometry-basics -> SOLUTION: prove the following identities: sin^2x+4sinx+3/cos^^2x= 3+sinx/1-sinx      Log On


   



Question 855036: prove the following identities: sin^2x+4sinx+3/cos^^2x= 3+sinx/1-sinx
Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
prove the following identities:
sin^2x+4sinx+3/cos^2x = 3+sinx/1-sinx
--------
Factor::
[(sin(x)+3)(sin(x)+1)]/(1-sin^2(x) = (3+sin(x))/(1-sin(x))
----------------------------------------
Divide both sides by (3+sin(x))
----
[1+sin(x)]/[(1+sin(x))(1-sin(x))] = 1/(1-sin(x))
---------
Cancel (1+sin(x)) on left side
------
1/(1-sin(x)) = 1/(1-sin(x))
=================================
Cheers,
Stan H.
=================================