SOLUTION: -sin(theta) + cos(2theta) = 0

Algebra ->  Trigonometry-basics -> SOLUTION: -sin(theta) + cos(2theta) = 0      Log On


   



Question 835644: -sin(theta) + cos(2theta) = 0
Answer by jim_thompson5910(35256) About Me  (Show Source):
You can put this solution on YOUR website!
-sin(theta) + cos(2theta) = 0

-sin(theta) + 1 - 2*sin^2(theta) = 0

-z + 1 - 2z^2 = 0 ... let z = sin(theta)

-2z^2 - z + 1 = 0

2z^2 + z - 1 = 0

(z+1)(2z-1) = 0

z+1 = 0 or 2z-1 = 0

z = -1 or z = 1/2

=======================================================

If z = -1, then

z = -1

sin(theta) = -1

theta = arcsin(-1)

theta = 3pi/2

=======================================================

If z = 1/2, then

z = 1/2

sin(theta) = 1/2

theta = arcsin(1/2)

theta = pi/6 or theta = 5pi/6

=======================================================

Answer:

theta = pi/6, theta = 5pi/6, theta = 3pi/2

Note: this is assuming we're restricted to the interval [0, 2pi)