|  | 
| 
 
 
| Question 824282:  A book store can purchase several calculators for a total cost of $120. If each calculator cost $1 less, the bookstore could purchase 10 additional calculators at the same total cost. How many calculators can be purchased at the regular price?
 Answer by TimothyLamb(4379)
      (Show Source): 
You can put this solution on YOUR website! --- x = number of calculators
 y = price
 ---
 xy = 120
 (x + 10)(y - 1) = 120
 ---
 y = 120/x
 xy - x + 10y - 10 = 120
 x120/x - x + 10*120/x - 10 = 120
 -x + 1200/x - 10 = 0
 -xx + 1200 - 10x = 0
 -xx - 10x + 1200 = 0
 ---
 the above quadratic equation is in standard form, with a=-1, b=-10, and c=1200
 ---
 to solve the quadratic equation, by using the quadratic formula, copy and paste this:
 -1 -10 1200
 into this solver: https://sooeet.com/math/quadratic-equation-solver.php
 ---
 this quadratic has two real roots (the x-intercepts), which are:
 x = -40
 x = 30
 ---
 a negative number of calculators doesn't make sense for this problem, so use the positive root:
 ---
 answer:
 x = number of calculators = 30
 y = price = $4
 ---
 Solve and graph linear equations:
 https://sooeet.com/math/linear-equation-solver.php
 ---
 Solve quadratic equations, quadratic formula:
 https://sooeet.com/math/quadratic-formula-solver.php
 ---
 Solve systems of linear equations up to 6-equations 6-variables:
 https://sooeet.com/math/system-of-linear-equations-solver.php
 | 
  
 | 
 |  |  |