SOLUTION: prove :[cos(pi+x)cos(-x)]/[sin(pi-x)cos(pi/2+x)]=cot^2x

Algebra ->  Trigonometry-basics -> SOLUTION: prove :[cos(pi+x)cos(-x)]/[sin(pi-x)cos(pi/2+x)]=cot^2x      Log On


   



Question 815262: prove :[cos(pi+x)cos(-x)]/[sin(pi-x)cos(pi/2+x)]=cot^2x
Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
prove :[cos(pi+x)cos(-x)]/[sin(pi-x)cos(pi/2+x)]=cot^2x
***
start with left side:
[cos(pi+x)cos(-x)]/[sin(pi-x)cos(pi/2+x)]
=[-cos(x)cos(x)]/[sin(x)*-sin(x)]
=-cos^2(x)/-sin^2(x)=cot^2(x)
verified: left side=right side