SOLUTION: Given a hyperbola with equation: (x-3)^2/25-(y+8)^2/9=1 Find the center, length of the transverse axis, slopes of the asymptotes, and tell if it is oriented left/right or up/down.

Algebra ->  Finance -> SOLUTION: Given a hyperbola with equation: (x-3)^2/25-(y+8)^2/9=1 Find the center, length of the transverse axis, slopes of the asymptotes, and tell if it is oriented left/right or up/down.      Log On


   



Question 812945: Given a hyperbola with equation: (x-3)^2/25-(y+8)^2/9=1
Find the center, length of the transverse axis, slopes of the asymptotes, and tell if it is oriented left/right or up/down.

Answer by ewatrrr(24785) About Me  (Show Source):
You can put this solution on YOUR website!
 
Hi
*****Standard Form of an Equation of an Hyperbola opening right and left is:
%28x-h%29%5E2%2Fa%5E2+-+%28y-k%29%5E2%2Fb%5E2+=+1 with C(h,k) and vertices 'a' units right and left of center, 2a the length of the transverse axis
%28x-3%29%5E2%2F25-%28y%2B8%29%5E2%2F9=1 opens left/right
C(3,-8) , a = 5, 2a = 10, the length of transverse axis
the slopes of the asymptotes = ±b/a = ±3/5
See below descriptions of various conics
Standard Form of an Equation of a Circle is %28x-h%29%5E2+%2B+%28y-k%29%5E2+=+r%5E2
where Pt(h,k) is the center and r is the radius
Standard Form of an Equation of an Ellipse is %28x-h%29%5E2%2Fa%5E2+%2B+%28y-k%29%5E2%2Fb%5E2+=+1+
where Pt(h,k) is the center. (a variable positioned to correspond with major axis)
a and b are the respective vertices distances from center
and ±sqrt%28a%5E2-b%5E2%29are the foci distances from center: a > b
Standard Form of an Equation of an Hyperbola opening up and down is:
%28y-k%29%5E2%2Fb%5E2+-+%28x-h%29%5E2%2Fa%5E2+=+1 with C(h,k) and vertices 'b' units up and down from center, 2b the length of the transverse axis
Foci sqrt%28a%5E2%2Bb%5E2%29units units up and down from center, along x = h
& Asymptotes Lines passing thru C(h,k), with slopes m = ± b/a
*****Standard Form of an Equation of an Hyperbola opening right and left is:
%28x-h%29%5E2%2Fa%5E2+-+%28y-k%29%5E2%2Fb%5E2+=+1 with C(h,k) and vertices 'a' units right and left of center, 2a the length of the transverse axis
Foci are sqrt%28a%5E2%2Bb%5E2%29 units right and left of center along y = k
& Asymptotes Lines passing thru C(h,k), with slopes m = ± b/a

the vertex form of a Parabola opening up(a>0) or down(a<0), y=a%28x-h%29%5E2+%2Bk
where(h,k) is the vertex and x = h is the Line of Symmetry
The standard form is %28x+-h%29%5E2+=+4p%28y+-k%29, where the focus is (h,k + p)
the vertex form of a Parabola opening right(a>0) or left(a<0), x=a%28y-k%29%5E2+%2Bh
where(h,k) is the vertex and y = k is the Line of Symmetry
The standard form is %28y+-k%29%5E2+=+4p%28x+-h%29, where the focus is (h +p,k )