| 
 
 
| Question 809492:  Solve 1+cos(2x)=2sin^2(2x) for x, where 0 ≤ to x < 2π
 
 Answer by lwsshak3(11628)
      (Show Source): 
You can put this solution on YOUR website! Solve 1+cos(2x)=2sin^2(2x) for x, where 0 ≤ to x < 2π ***
 1+cos(2x)=2sin^2(2x)
 1+cos(2x)=2(1-cos^2(2x)
 1+cos(2x)=2-2cos^2(2x)
 2cos^2(2x)+cos(2x)-1=0
 (2cos(2x)-1)(cos(2x)+1)=0
 ..
 2cos(2x)-1=0
 cos(2x)=1/2
 2x=π/3, 5π/3
 x=π/6, 5π/6
 ..
 cos(2x)+1=0
 cos(2x)=-1
 2x=π
 x=π/2
 
 | 
  
 | 
 |