You can 
put this solution on YOUR website! 
                        z5 + 4z = 0
                      z(z4 + 1) = 0
          z(z4 + 1 + 4z2 - 4z2) = 0
          z(z4 + 4z2 + 1 - 4z2) = 0
        z[(z4 + 4z2 + 1) - 4z2] = 0
             z[(z2 + 1)2 - 4z2] = 0
z[(z2 + 1) - 2z][(z2 + 1) + 2z] = 0
    z[z2 + 1 - 2z][z2 + 1 + 2z] = 0
    z(z2 - 2z + 1)(z2 + 2z + 1) = 0
z = 0;  z2 - 2z + 1 = 0;  z2 + 2z + 1 = 0
Solve the quadratics by the quadratic formula and get
z = 0; z = 1 + 1; z = 1 - i; z = -1 + i;  z = -1 - i
Edwin