y = [cos(6x)]x
Take the natural log of both sides
ln(y) = ln(cos 6x)x
Use the rule ln(AB) = B·ln(A)
ln(y) = x·ln[cos(6x)]
Use the rules
[ln(u)] = u·v = u·v' + u'·v
cos(u) = -sin(u)·u'
= x· + 1·ln[cos(6x)]
= -6x· + ln[cos(6x)]
Since ,
= -6x·tan(6x) + ln[cos(6x)]
Multiply both sides by y
y' = y{-6x·tan(6x) + ln[cos(6x)]}
Go back to the original equation for y, and substitute (cos 6x)x
for y.
y' = [cos(6x)]x{-6x·tan(6x) + ln[cos(6x)]}
Edwin