You can 
put this solution on YOUR website! 
How do you solve x³ = 1?
      x³ = 1
  x³ - 1 = 0
Factor the difference of cubes:
(x - 1)(x² + x + 1) = 0
Set each factor equal to 0
Setting first factor = 0
x - 1 = 0
    x = 1  (that's ONE solution).
Setting second factor = 0
         x² + x + 1 = 0 
Use the quadratic formula:
                  ______ 
            -b ± Öb²-4ac
        x = —————————————
                2a 
where a = 1; b = 1; c = 1
                     _____________
             -(1) ± Ö(1)²-4(1)(1)
        x = ————————————————————————
                     2(1) 
                   _____ 
             -1 ± Ö1-4
        x = —————————————
                  2
                   __ 
             -1 ± Ö-3
        x = ———————————
                 2  
                    _ 
             -1 ± iÖ3
        x = ———————————
                 2 
To write these in the form A ± Bi
                     _
             -1     Ö3
        x = ———— ± ————·i 
              2      2
So there are three solutions:
(1)     x = 1
                     _
             -1     Ö3
(2)     x = ———— + ————·i 
              2      2
 
                     _
             -1     Ö3
(3)     x = ———— - ————·i 
              2      2
Edwin