You can
put this solution on YOUR website!
We will use the identities
cos(2q) = 1-2sinē(q)
sin(2q) = 2sin(q)cos(q)
cosē(q) = 1-sinē(q)
cos(4x) - 4cos(2x) + 3
1-2sinē(2x) - 4[1-2sinē(x)] + 3
1 - 2[2sin(x)cos(x)]ē - 4 + 8sinē(x) + 3
The numbers combine to 0, so we have:
-2[2sin(x)cos(x)]ē + 8sinē(x)
-2[4sinē(x)cosē(x)] + 8sinē(x)
-8sinē(x)cosē(x) + 8sinē(x)
-8sinē(x)[1-sinē(x)] + 8sinē(x)
-8sinē(x)+8sin4(x) + 8sinē(x)
8sin4(x)
Edwin