SOLUTION: How do I divide x^2+2x-1 into 3x^4+x^3-2x+6 using long division?

Algebra ->  Polynomials-and-rational-expressions -> SOLUTION: How do I divide x^2+2x-1 into 3x^4+x^3-2x+6 using long division?       Log On


   



Question 796829: How do I divide x^2+2x-1 into 3x^4+x^3-2x+6 using long division?
Answer by josgarithmetic(39617) About Me  (Show Source):
You can put this solution on YOUR website!
The process is much the same as ordinary long division, but easier.

__________|_____3x^2__-5x___+13
__________|____________________________
x^2+2x-1___|____3x^4+x^3+0x^2-2x+6
__________|____3x^3+6x^3+-3x^2
________________0__-5x^3+3x^2...-2x
___________________-5x^3+-10x^2+5x
____________________0____13x^2+-7x...6
_________________________13x^2+26x-13
__________________________0___-33x+19

Complete quotient and remainder is 3x%5E2-5x%2B13%2B%28-33x%2B19%29%2F%28x%5E2%2B2x-1%29.

The top line in the above work is the accumulation of the partial quotients. The second line of terms shows the divisor and the dividend. The final bottom line shows the resulting remainder.