SOLUTION: Hiya!
I was hoping you guys could help me with this:
Use long division to find the quotiet and remainder when 2x^5 + x^4-x+1 is divided by 2x^2-x-1.
Thanks alot!
Algebra ->
Polynomials-and-rational-expressions
-> SOLUTION: Hiya!
I was hoping you guys could help me with this:
Use long division to find the quotiet and remainder when 2x^5 + x^4-x+1 is divided by 2x^2-x-1.
Thanks alot!
Log On
Question 79209: Hiya!
I was hoping you guys could help me with this:
Use long division to find the quotiet and remainder when 2x^5 + x^4-x+1 is divided by 2x^2-x-1.
Thanks alot! Answer by ankor@dixie-net.com(22740) (Show Source):
You can put this solution on YOUR website! Use long division to find the quotient and remainder
when 2x^5 + x^4 - x + 1 is divided by 2x^2-x-1.
:
:
Remember you have to represent each degree of the equation, use a 0 if necessary:
:
.........................................................x^3 + x^2 + x + 1
...........................------------------------------------
(2x^2 - x - 1) | 2x^5 + x^4 + 0x^3 + 0x^2 - x + 1
...........................2x^5 - x^4 - x^3
...........................-----------------
.........................................2x^4 + x^3 + 0x^2
.........................................2x^4 - x^3 - x^2
.........................................------------------
......................................................2x^3 + x^2 - x
.................................. ...................2x^3 - x^2 - x
......................................................---------------
................................................................2x^2 + 0x +1
................................................................2x^2 - x - 1
..............................................................--------------
.......................................................................x + 2
:
:
Ans: x^3 + x^2 + x + 1; remainder (x+2)/(2x^2-x-1)
:
A lot of chance to make a mistake here, Check this closely.