Question 790340:  Explain why Sine (theta + pi/2) = Cosine(theta) and why Cosine (theta + pi/2) = -Sine(theta) 
 Answer by lwsshak3(11628)      (Show Source): 
You can  put this solution on YOUR website! Explain why Sine (theta + pi/2) = Cosine(theta) and why Cosine (theta + pi/2) = -Sine(theta) 
*** 
sin(x+π/2)=cos(x) 
cos(x+π/2)=-sin(x) 
.. 
Adding π/2 moves the reference angle one quadrant over and changes the reference angle to the complement of the original angle. So, cos of the complement=sin of the angle. Also, the sign changes when moving the sin but the sign does not change when moving the cos. Four examples follow using degrees: (special angles for used for ease of explaning, but should work for any angles) 
.. 
let x=30 deg in quadrant I 
reference angle=30 deg 
30+90=120 deg in quadrant II 
reference angle=60 deg 
sin 30=1/2 
cos 120=-1/2 
-cos(x+90)=sin(x) 
cos(x+90)=-sin(x) 
.. 
let x=60 deg in quadrant I 
reference angle=60 deg 
60+90=150 deg in quadrant II 
reference angle=30 deg 
cos 60=1/2 
sin 150=1/2 
sin(x+90)=cos(x) 
.. 
let x=120 deg in quadrant II 
reference angle=30 deg 
120+90=210 deg in quadrant III 
reference angle=60 deg 
cos 120=-1/2 
sin 210=-1/2 
sin(x+90)=cos(x)
 
.. 
let x=330 deg in quadrant IV 
reference angle=30 deg 
330+90=420 deg in quadrant I 
reference angle=60 deg 
sin 330=-1/2 
cos 420=1/2 
cos(x+90)=-sin(x)
 
 
  | 
 
  
 
 |   
 
 |