SOLUTION: How do I solve this simultaneous logarithm. log (x-4)+ 2 log y = log 16 log x + log y = 16

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: How do I solve this simultaneous logarithm. log (x-4)+ 2 log y = log 16 log x + log y = 16      Log On


   



Question 787559: How do I solve this simultaneous logarithm.
log (x-4)+ 2 log y = log 16
log x + log y = 16

Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
log (x-4)+ 2 log y = log 16
log x + log y = 16
---------
Modify for elimination:
log(x-4) + 2log(y) = log(16)
2log(x) + 2log(y) = 32
------
Subtract and solve for "x":
2log(x) - log(x-4) = 32-log(16)
--------
log(x^2) - log(x-4) + log(16) = 32
----------------
log[16x^2/(x-4)] = 32
-----------------
16x^2/(x-4) = 10^32
----
16x^2 -10^32x -4*10^32 = 0
----
Solve for "x"; then solve for "y".
=============================
Cheers,
Stan H.
===============