| 
 
 
| Question 786519:  How do i find the center, vertices, co-vertices and foci of these equations?
 1. 25x2 + 9y2  = 225
 2. 49x2 + y2 = 49
 3. x2 - 2x + 9y2 - 8 = 0
 4. x2 + 4y2 - 18x -8y + 81 = 0
 Answer by lwsshak3(11628)
      (Show Source): 
You can put this solution on YOUR website! How do i find the center, vertices, co-vertices and foci of these equations? **
 Standard form of equation for ellipses:
 1)With horizontal major axis:
  , a>b, (h,k)=(x,y) coordinates of the center. 2)With vertical major axis:
  , a>b, (h,k)=(x,y) coordinates of the center. ..
 1. 25x2 + 9y2 = 225
 divide by 225
 x^2/9+y^2/25=1
 ellipse has vertical major axis
 center: (0,0)
 a^2=25
 a=√25=5
 vertices: (0,±5)
 b^2=9
 b=√9=3
 co-vertices:(±3,0)
 c^2=a^2-b^2=25-9=16
 c=√16=4
 foci:(0,±4)
 ..
 2. 49x2 + y2 = 49
 divide by 49
 x^2+y^2/49=1
 ellipse has vertical major axis
 center: (0,0)
 a^2=49
 a=√49=7
 vertices: (0,±7)
 b^2=1
 b=1
 co-vertices:(±1,0)
 c^2=a^2-b^2=49-1=48
 c=√48
 foci:(0,±√48)
 ..
 3. x2 - 2x + 9y2 - 8 = 0
 complete the square
 (x^2-2x+1)+9y^2=8+1
 (x-1)^2+9y^2=9
 divide by 9
 x^2/9+y^2=1
 ellipse has horizontal major axis
 center: (1,0)
 a^2=9
 a=√9=3
 vertices: (-2,0),(4,0)
 b^2=1
 b=1
 co-vertices:(0,±1)
 c^2=a^2-b^2=9-1=8
 c=√8
 foci:(1-√8,0),(1+√8,0)
 ..
 4. x2 + 4y2 - 18x -8y + 81 = 0
 x^2-18x+4y^2-8y=-81
 complete the square:
 (x^2-18x+81)+4(y^2-2y+1)=-81+81+4
 (x-9)^2+4(y-1)^2=4
 divide by 4
 (x-9)^2/4+(y-1)^2=1
 ellipse has horizontal major axis
 center: (9,1)
 a^2=4
 a=√4=2
 vertices: (7,1),(11,1)
 b^2=1
 b=1
 co-vertices:(9,0),(9,2)
 c^2=a^2-b^2=4-1=3
 c=√3
 foci:(9-√3,1),(9+√3,1)
 
 | 
  
 | 
 |