Question 786289:  if sin(theta)=5/6, theta in quadrant 2, find the exact value of tan (theta+pi/4 
 Answer by lwsshak3(11628)      (Show Source): 
You can  put this solution on YOUR website! if sin(theta)=5/6, theta in quadrant 2, find the exact value of tan (theta+pi/4) 
*** 
use x for theta 
cosx=√(1-sin^2x)=√(1-25/36)=√(11/36)=√11/6 
tan x=sinx/-cosx=-5/√11(In quadrant 2, sin>0, cos<0, and tan<0) 
use tan addition formula: 
tan(x+π/4)=(tanx+tan(π/4))/(1-tanx*tan(π/4)) 
tan(π/4)=1 
tan(x+(π/4))=(-5/√11)+1/(1-(-5/√11*1) 
tan(x+(π/4))=(1-5/√11)/(1+5/√11) 
  | 
 
  
 
 |   
 
 |