You can put this solution on YOUR website! Check to make sure that you copied the problem correctly. If the problem is correct as
you posted it, the answer is
.
If you posted the problem correctly, then I suspect that you are adding not subtracting
during the division process.
.
For example. You got the first division correct ... and the first quotient term is, as you
found, . When you multiply this back times the divisor the product is:
.
.
when you subtract this from you CHANGE THE SIGNS of to
get and then you add this to . The result is:
. .
.
You then bring down the -5x term. So the next division is into .
This division will result in +15x and multiplying it back the times
results in . Subtract this from . Do that by changing the
signs to and adding it to to get .
.
Divide the by to get 40. Back multiply this to get
equals . Subtract this from by changing the signs to
. and adding that to to get . The 121 is the remainder
and it can be divided by the divisor . This will make the answer to this division
problem:
.
. with a remainder of
.
Hope this helps you to understand the process of algebraic long division.
.