Question 762286: Let f(x) = 2x^2 - 3x +4 and g(x) = x + 3.
Find f(x) + 3g(x)
A. 2x^2 - 2x + 7
B. 2x^2 + 6x + 13
C. 2x^2 + 13
D. 2x^2 - 6x + 13
2.
State the range of the following relation:
{(-1, -3), (9, -1), (-6, -9), (0, -4), (2, -1), (-2, -3)}
A. {All real numbers}
B. {-9, -4, -3, -1}
C. {-1, -3, 9, -6, 0}
D. {-6, -2, -1, 0, 2, 9}
Answer by jim_thompson5910(35256) (Show Source):
You can put this solution on YOUR website! # 1
f(x) + 3*g(x) = 2x^2 - 3x +4 + 3*(x+3)
f(x) + 3*g(x) = 2x^2 - 3x +4 + 3x + 9
f(x) + 3*g(x) = 2x^2 + 13
So it's choice C
==================================================================
# 2
The range is the set of all possible outputs of a function. Basically it's the set of y values of each point.
The y values of (-1, -3), (9, -1), (-6, -9), (0, -4), (2, -1), (-2, -3) are: -3, -1, -9, -4, -1, -3
Toss out the duplicates to get: -3, -1, -9, -4
and this is choice B (just in a different order, but order doesn't matter in a set)
|
|
|