SOLUTION: Multiply using the FOIL method: (2x + 1)(x - 2) A) x - 1 B) 2x^2 - 3x - 2 C) 2x^2 + 2x - 1 D) 2x^2 + 5x + 2

Algebra ->  Distributive-associative-commutative-properties -> SOLUTION: Multiply using the FOIL method: (2x + 1)(x - 2) A) x - 1 B) 2x^2 - 3x - 2 C) 2x^2 + 2x - 1 D) 2x^2 + 5x + 2       Log On


   



Question 73969: Multiply using the FOIL method: (2x + 1)(x - 2)
A) x - 1
B) 2x^2 - 3x - 2
C) 2x^2 + 2x - 1
D) 2x^2 + 5x + 2

Answer by ffc_01(9) About Me  (Show Source):
You can put this solution on YOUR website!
(2x + 1)(x - 2)
FOIL stands for ...
Firsts
Outer
Inner
Lasts
This is the order in which we will multiply.
The "Firsts" are the first term in each factor.
Multiply them together
(2x)(x)
Add this to the product of the "Outer" terms
(2x)(x) + (2x)(2)
Then for the "Inner"
(2x)(x)+(2x)(2)+(1)(x)
And the "Lasts"
(2x)(x)+(2x)(2)+(1)(x)+(1)(2)
Multiply everything out
2x^2 + 4x + x + 2
Combine like terms
2x^2 + 5x + 2